Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37653905

RESUMEN

A prospecting campaign in the Maltese Islands has ensured the survival of several ancient olive trees (Olea europaea L.), genetically distant from known cultivars. Most of these plants were abandoned or partially cultivated. A two-year evaluation of fruit characteristics and compositions was performed on samples collected from the main representatives of these indigenous genotypes. Analyses were carried out using Gas Chromatography, High-Performance Liquid Chromatography and Near Infrared Spectrometry. Among the fruit samples, a wide range of variations was observed. Some of the genotypes showed fruit traits suitable for table olive production. This is the case of samples with a pulp/pit ratio higher than four, such as 1Wardija, 1Caritas, 1Plattini, 1Bingemma Malta and 3Loretu, whilst 1Bidni, 1Mellieha, 2Qnotta, 3Loretu, 1Bingemma Malta and 1Caritas were suitable for dual purpose. The total phenol content ranged from 6.3 (1Wardija) to 117.9 (2Mtarfa) g/kg of fresh pulp. The average percentage of MUFA was quite low for most of the varieties. These genotypes, which presumably originated in the Maltese Islands and are well adapted to the local pedo-climatic conditions, are being propagated for the following evaluation of their bio-agronomical performance (production, suitability to intensive cultivation, environmental sustainability, product quality, etc.). The purpose is to select, among these local genotypes, the most outstanding varieties, in terms of phenolic and FA profile and agronomical potential, to spread into cultivation, thereby contributing to an increase in the quality of the local table and olive oil production, strongly linked to the territory.

2.
New Phytol ; 238(5): 2047-2063, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36880371

RESUMEN

The bioactive properties of olive (Olea europaea) fruits and olive oil are largely attributed to terpenoid compounds, including diverse triterpenoids such as oleanolic, maslinic and ursolic acids, erythrodiol, and uvaol. They have applications in the agri-food, cosmetics, and pharmaceutical industries. Some key steps involved in the biosynthesis of these compounds are still unknown. Genome mining, biochemical analysis, and trait association studies have been used to identify major gene candidates controlling triterpenoid content of olive fruits. Here, we identify and functionally characterize an oxidosqualene cyclase (OeBAS) required for the production of the major triterpene scaffold ß-amyrin, the precursor of erythrodiol, oleanolic and maslinic acids, and a cytochrome P450 (CYP716C67) that mediates 2α oxidation of the oleanane- and ursane-type triterpene scaffolds to produce maslinic and corosolic acids, respectively. To confirm the enzymatic functions of the entire pathway, we have reconstituted the olive biosynthetic pathway for oleanane- and ursane-type triterpenoids in the heterologous host, Nicotiana benthamiana. Finally, we have identified genetic markers associated with oleanolic and maslinic acid fruit content on the chromosomes carrying the OeBAS and CYP716C67 genes. Our results shed light on the biosynthesis of olive triterpenoids and provide new gene targets for germplasm screening and breeding for high triterpenoid content.


Asunto(s)
Olea , Triterpenos , Olea/genética , Frutas/metabolismo , Fitomejoramiento , Triterpenos/metabolismo
4.
Front Plant Sci ; 13: 869048, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432417

RESUMEN

The current view of plant genome evolution proposes that genome size has mainly been determined by polyploidisation and amplification/loss of transposons, with a minor role played by other repeated sequences, such as tandem repeats. In cultivated olive (Olea europaea subsp. europaea var. europaea), available data suggest a singular model of genome evolution, in which a massive expansion of tandem-repeated sequences accompanied changes in nuclear architecture. This peculiar scenario highlights the importance of focusing on Olea genus evolution, to shed light on mechanisms that led to its present genomic structure. Next-generation sequencing technologies, bioinformatics and in situ hybridisation were applied to study the genomic structure of five related Olea taxa, which originated at different times from their last common ancestor. On average, repetitive DNA in the Olea taxa ranged from ~59% to ~73% of the total genome, showing remarkable differences in terms of composition. Among repeats, we identified 11 major families of tandem repeats, with different abundances in the analysed taxa, five of which were novel discoveries. Interestingly, overall tandem repeat abundance was inversely correlated to that of retrotransposons. This trend might imply a competition in the proliferation of these repeat classes. Indeed, O. paniculata, the species closest to the Olea common ancestor, showed very few tandem-repeated sequences, while it was rich in long terminal repeat retrotransposons, suggesting that the amplification of tandem repeats occurred after its divergence from the Olea ancestor. Furthermore, some tandem repeats were physically localised in closely related O. europaea subspecies (i.e., cultivated olive and O. europaea subsp. cuspidata), which showed a significant difference in tandem repeats abundance. For 4 tandem repeats families, a similar number of hybridisation signals were observed in both subspecies, apparently indicating that, after their dissemination throughout the olive genome, these tandem repeats families differentially amplified maintaining the same positions in each genome. Overall, our research identified the temporal dynamics shaping genome structure during Olea speciation, which represented a singular model of genome evolution in higher plants.

5.
Antioxidants (Basel) ; 11(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35453357

RESUMEN

The health, therapeutic, and organoleptic characteristics of olive oil depend on functional bioactive compounds, such as phenols, tocopherols, squalene, and sterols. Genotype plays a key role in the diversity and concentration of secondary compounds peculiar to olive. In this study, the most important bioactive compounds of olive fruit were studied in numerous international olive cultivars during two consecutive seasons. A large variability was measured for each studied metabolite in all 61 olive cultivars. Total phenol content varied on a scale of 1-10 (3831-39,252 mg kg-1) in the studied cultivars. Squalene values fluctuated over an even wider range (1-15), with values of 274 to 4351 mg kg-1. Total sterols ranged from 119 to 969 mg kg-1, and total tocopherols varied from 135 to 579 mg kg-1 in fruit pulp. In the present study, the linkage among the most important quality traits highlighted the scarcity of cultivars with high content of at least three traits together. This work provided sound information on the fruit metabolite profile of a wide range of cultivars, which will facilitate the studies on the genomic regulation of plant metabolites and development of new olive genotypes through genomics-assisted breeding.

6.
Plants (Basel) ; 11(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35406901

RESUMEN

Olive, the emblematic Mediterranean fruit crop, owns a great varietal diversity, which is maintained in ex situ field collections, such as the World Olive Germplasm Bank of Córdoba (WOGBC), Spain. Accurate identification of WOGBC, one of the world's largest collections, is essential for efficient management and use of olive germplasm. The present study is the first report of the use of a core set of 96 EST-SNP markers for the fingerprinting of 1273 accessions from 29 countries, including both field and new acquired accessions. The EST-SNP fingerprinting made possible the accurate identification of 668 different genotypes, including 148 detected among the new acquired accessions. Despite the overall high genetic diversity found at WOGBC, the EST-SNPs also revealed the presence of remarkable redundant germplasm mostly represented by synonymy cases within and between countries. This finding, together with the presence of homonymy cases, may reflect a continuous interchange of olive cultivars, as well as a common and general approach for their naming. The structure analysis revealed a certain geographic clustering of the analysed germplasm. The EST-SNP panel under study provides a powerful and accurate genotyping tool, allowing for the foundation of a common strategy for efficient safeguarding and management of olive genetic resources.

8.
Plants (Basel) ; 12(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36616181

RESUMEN

A major concern for olive cultivation in many extra-Mediterranean regions is the adaptation of recently introduced cultivars to environmental conditions different from those prevailing in the original area, such as the Mediterranean basin. Some of these cultivars can easily adapt their physiological and biochemical parameters in new agro-environments, whereas others show unbalanced values of oleic acid content. The objective of this study was to evaluate the effects of the thermal regime during oil synthesis on the expression of fatty acid desaturase genes and on the unsaturated fatty acid contents at the field level. Two cultivars (Arbequina and Coratina) were included in the analysis over a wide latitudinal gradient in Argentina. The results suggest that the thermal regime exerts a regulatory effect at the transcriptional level on both OeSAD2 and OeFAD2-2 genes and that this regulation is cultivar-dependent. It was also observed that the accumulated thermal time affects gene expression and the contents of oleic and linoleic acids in cv. Arbequina more than in Coratina. The fatty acid composition of cv. Arbequina is more influenced by the temperature regime than Coratina, suggesting its greater plasticity. Overall, findings from this study may drive future strategies for olive spreading towards areas with different or extreme thermal regimes serve as guidance for the evaluation olive varietal patrimony.

9.
Foods ; 10(8)2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34441722

RESUMEN

The extent and conditions of storage may affect the stability and quality of extra virgin olive oil (EVOO). This study aimed at evaluating the effects of different storage conditions (ambient, 4 °C and -18 °C temperatures, and argon headspace) on three EVOOs (low, medium, and high phenols) over 18 and 36 months, analyzing the main metabolites at six time points. The results showed that low temperatures are able to maintain all three EVOOs within the legal limits established by the current EU regulations for most compounds up to 36 months. Oleocanthal, squalene, and total phenols were affected by storage temperatures more than other compounds and degradation of squalene and α-tocopherol was inhibited only by low temperatures. The best temperature for 3-year conservation was 4 °C, but -18 °C represented the optimum temperature to preserve the organoleptic properties. The present study provided new insights that should guide EVOO manufacturers and traders to apply the most efficient storage methods to maintain the characteristics of the freshly extracted oils for a long conservation time.

10.
Evol Appl ; 14(4): 983-995, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33897815

RESUMEN

Self-incompatibility (SI) in flowering plants potentially represents a major obstacle for sexual reproduction, especially when the number of S-alleles is low. The situation is extreme in the commercially important olive tree, where in vitro pollination assays suggested the existence of a diallelic SI (DSI) system involving only two groups (G1 and G2). Varieties belonging to the same SI group cannot fertilize each other, such that successful fruit production is predicted to require pollination between varieties of different groups. To test this prediction, we explored the extent to which the DSI system determines fertilization patterns under field conditions. One hundred and seventeen olive cultivars were first genotyped using 10 highly polymorphic dinucleotide Simple Sequence Repeat (SSR) markers to ascertain varietal identity. Cultivars were then phenotyped through controlled pollination tests to assign each of them to one of the two SI groups. We then collected and genotyped 1440 open pollinated embryos from five different orchards constituted of seven local cultivars with known group of incompatibility groups. Embryos genotype information were used: (i) to assign embryos to the most likely pollen donor genotype in the neighbourhood using paternity analysis, and (ii) to compare the composition of the pollen cloud genetic among recipient trees in the five sites. The paternity analysis showed that the DSI system is the main determinant of fertilization success under field open pollination conditions: G1 cultivars sired seeds exclusively on G2 cultivars, and reciprocally. No self-fertilization events were observed. Our results demonstrate that DSI is a potent force determining pollination success among varieties within olive orchards used for production. They have the potential to improve management practices by guiding the selection of compatible varieties to avoid planting orchards containing sets of varieties with strongly unbalanced SI groups, as these would lead to suboptimal olive production.

11.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008580

RESUMEN

Climate change, currently taking place worldwide and also in the Mediterranean area, is leading to a reduction in water availability and to groundwater salinization. Olive represents one of the most efficient tree crops to face these scenarios, thanks to its natural ability to tolerate moderate salinity and drought. In the present work, four olive cultivars (Koroneiki, Picual, Royal de Cazorla and Fadak86) were exposed to high salt stress conditions (200 mM of NaCl) in greenhouse, in order to evaluate their tolerance level and to identify key genes involved in salt stress response. Molecular and physiological parameters, as well as plant growth and leaves' ions Na+ and K+ content were measured. Results of the physiological measurements showed Royal de Cazorla as the most tolerant cultivar, and Fadak86 and Picual as the most susceptible ones. Ten candidate genes were analyzed and their complete genomic, CDS and protein sequences were identified. The expression analysis of their transcripts through reverse transcriptase quantitative PCR (RT-qPCR) demonstrated that only OeNHX7, OeP5CS, OeRD19A and OePetD were upregulated in tolerant cultivars, thus suggesting their key role in the activation of a salt tolerance mechanism.


Asunto(s)
Olea/genética , Estrés Salino/genética , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Hojas de la Planta/genética , Raíces de Plantas/genética , Salinidad , Tolerancia a la Sal/genética , Sodio/metabolismo
12.
New Phytol ; 229(4): 2288-2301, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33124697

RESUMEN

Olive (Olea europaea) is an important crop in Europe, with high cultural, economic and nutritional significance. Olive oil flavor and quality depend on phenolic secoiridoids, but the biosynthetic pathway of these iridoids remains largely uncharacterized. We discovered two bifunctional cytochrome P450 enzymes, catalyzing the rare oxidative C-C bond cleavage of 7-epi-loganin to produce oleoside methyl ester (OeOMES) and secoxyloganin (OeSXS), both through a ketologanin intermediary. Although these enzymes are homologous to the previously reported Catharanthus roseus secologanin synthase (CrSLS), the substrate and product profiles differ. Biochemical assays provided mechanistic insights into the two-step OeOMES and CrSLS reactions. Model-guided mutations of OeOMES changed the product profile in a predictable manner, revealing insights into the molecular basis for this change in product specificity. Our results suggest that, in contrast to published hypotheses, in planta production of secoxy-iridoids is secologanin-independent. Notably, sequence data of cultivated and wild olives point to a relation between domestication and OeOMES expression. Thus, the discovery of this key biosynthetic gene suggests a link between domestication and secondary metabolism, and could potentially be used as a genetic marker to guide next-generation breeding programs.


Asunto(s)
Olea , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Europa (Continente) , Iridoides/análisis , Olea/genética , Aceite de Oliva , Estrés Oxidativo , Fitomejoramiento
13.
Genes (Basel) ; 11(8)2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785094

RESUMEN

BACKGROUND: The species Olea europaea includes cultivated varieties (subsp. europaea var. europaea), wild plants (subsp. europaea var. sylvestris), and five other subspecies spread over almost all continents. Single nucleotide polymorphisms in the expressed sequence tag able to underline intra-species differentiation are not yet identified, beyond a few plastidial markers. METHODS: In the present work, more than 1000 transcript-specific SNP markers obtained by the genotyping of 260 individuals were studied. These genotypes included cultivated, oleasters, and samples of subspecies guanchica, and were analyzed in silico, in order to identify polymorphisms on key genes distinguishing different Olea europaea forms. RESULTS: Phylogeny inference and principal coordinate analysis allowed to detect two distinct clusters, clearly separating wilds and guanchica samples from cultivated olives, meanwhile the structure analysis made possible to differentiate these three groups. Sequences carrying the polymorphisms that distinguished wild and cultivated olives were analyzed and annotated, allowing to identify 124 candidate genes that have a functional role in flower development, stress response, or involvement in important metabolic pathways. Signatures of selection that occurred during olive domestication, were detected and reported. CONCLUSION: This deep EST-SNP analysis provided important information on the genetic and genomic diversity of the olive complex, opening new opportunities to detect gene polymorphisms with potential functional and evolutionary roles, and to apply them in genomics-assisted breeding, highlighting the importance of olive germplasm conservation.


Asunto(s)
Etiquetas de Secuencia Expresada , Olea/clasificación , Olea/genética , Polimorfismo de Nucleótido Simple , Domesticación , Variación Genética , Genética de Población , Genómica/métodos , Genotipo , Humanos , Filogenia , Fitomejoramiento
14.
Sci Rep ; 9(1): 16968, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31740728

RESUMEN

Olive is a long-living perennial species with a wide geographical distribution, showing a large genetic and phenotypic variation in its growing area. There is an urgent need to uncover how olive phenotypic traits and plasticity can change regardless of the genetic background. A two-year study was conducted, based on the analysis of fruit and oil traits of 113 cultivars from five germplasm collections established in Mediterranean Basin countries and Argentina. Fruit and oil traits plasticity, broad-sense heritability and genotype by environment interaction were estimated. From variance and heritability analyses, it was shown that fruit fresh weight was mainly under genetic control, whereas oleic/(palmitic + linoleic) acids ratio was regulated by the environment and genotype by environment interaction had the major effect on oil content. Among the studied cultivars, different level of stability was observed, which allowed ranking the cultivars based on their plasticity for oil traits. High thermal amplitude, the difference of low and high year values of temperature, negatively affected the oil content and the oleic acid percentage. Information derived from this work will help to direct the selection of cultivars with the highest global fitness averaged over the environments rather than the highest fitness in each environment separately.


Asunto(s)
Olea/fisiología , Aceite de Oliva/química , Argentina , Ácidos Grasos/análisis , Frutas/química , Frutas/fisiología , Genotipo , Ácidos Linoleicos/análisis , Región Mediterránea , Herencia Multifactorial , Olea/química , Olea/genética , Aceite de Oliva/análisis , Ácido Palmítico/análisis , Temperatura
15.
Front Plant Sci ; 10: 867, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31333704

RESUMEN

Olive is considered as a moderately salt tolerant plant, however, tolerance to salt appears to be cultivar-dependent and genotypic responses have not been extensively investigated. In this work, saline stress was induced in four olive cultivars: Arbequina, Koroneiki, Royal de Cazorla and Fadak 86. The plants were grown in 2.5 l pots containing 60% peat and 40% of pumice mixture for 240 days and were irrigated three times a week with half-strength Hoagland solution containing 0, 100 and 200 mM NaCl. The effects of salt stress on growth, physiological and biochemical parameters were determined after 180, 210, and 240 days of treatment. Saline stress response was evaluated in leaves by measuring the activity of GSH and CAT enzymatic activity, as well as proline levels, gas exchanges, leaves relative water content and chlorophyll content, and proline content. All the studied cultivars showed a decrease in Net Photosynthesis, leaves chlorophyll content and plant growth (mainly leaves dry weight) and an increase in the activity of GSH and CAT. In addition, the reduction of proline content in leaf tissues, induced an alteration of osmotic regulation. Among the studied cultivars Royal and Koroneiki better counteracting the effects of saline stress thanks to a higher activity of two antioxidant enzymes.

16.
Sci Rep ; 9(1): 1093, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30705308

RESUMEN

Cultivated olive, a typical fruit crop species of the semi-arid regions, could successfully face the new scenarios driven by the climate change through the selection of tolerant varieties to salt and drought stresses. In the present work, multidisciplinary approaches, including physiological, epigenetic and genetic studies, have been applied to clarify the salt tolerance mechanisms in olive. Four varieties (Koroneiki, Royal de Cazorla, Arbequina and Picual) and a related form (O. europaea subsp. cuspidata) were grown in a hydroponic system under different salt concentrations from zero to 200 mM. In order to verify the plant response under salt stress, photosynthesis, gas exchange and relative water content were measured at different time points, whereas chlorophyll and leaf concentration of Na+, K+ and Ca2+ ions, were quantified at 43 and 60 days after treatment, when stress symptoms became prominent. Methylation sensitive amplification polymorphism (MSAP) technique was used to assess the effects of salt stress on plant DNA methylation. Several fragments resulted differentially methylated among genotypes, treatments and time points. Real time quantitative PCR (RT-qPCR) analysis revealed significant expression changes related to plant response to salinity. Four genes (OePIP1.1, OePetD, OePI4Kg4 and OeXyla) were identified, as well as multiple retrotransposon elements usually targeted by methylation under stress conditions.


Asunto(s)
Olea/genética , Olea/metabolismo , Hojas de la Planta/metabolismo , Clorofila/metabolismo , Metilación de ADN/genética , Metilación de ADN/fisiología , Regulación de la Expresión Génica de las Plantas , Genotipo , Fotosíntesis/genética , Fotosíntesis/fisiología , Hojas de la Planta/genética
17.
Front Plant Sci ; 10: 1760, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32117338

RESUMEN

The genetic control of self-incompatibility (SI) has been recently disclosed in olive. Inter-varietal crossing confirmed the presence of only two incompatibility groups (G1 and G2), suggesting a simple Mendelian inheritance of the trait. A double digest restriction associated DNA (ddRAD) sequencing of a biparental population segregating for incompatibility groups has been performed and high-density linkage maps were constructed in order to map the SI locus and identify gene candidates and linked markers. The progeny consisted of a full-sib family of 229 individuals derived from the cross 'Leccino' (G1) × 'Dolce Agogia' (G2) varieties, segregating 1:1 (G1:G2), in accordance with a diallelic self-incompatibility (DSI) model. A total of 16,743 single nucleotide polymorphisms was identified, 7,006 in the female parent 'Leccino' and 9,737 in the male parent 'Dolce Agogia.' Each parental map consisted of 23 linkage groups and showed an unusual large size (5,680 cM in 'Leccino' and 3,538 cM in 'Dolce Agogia'). Recombination was decreased across all linkage groups in pollen mother cells of 'Dolce Agogia,' the parent with higher heterozygosity, compared to megaspore mother cells of 'Leccino,' in a context of a species that showed exceptionally high recombination rates. A subset of 109 adult plants was assigned to either incompatibility group by a stigma test and the diallelic self-incompatibility (DSI) locus was mapped to an interval of 5.4 cM on linkage group 18. This region spanned a size of approximately 300 Kb in the olive genome assembly. We developed a sequence-tagged site marker in the DSI locus and identified five haplotypes in 57 cultivars with known incompatibility group assignment. A combination of two single-nucleotide polymorphisms (SNPs) was sufficient to predict G1 or G2 phenotypes in olive cultivars, enabling early marker-assisted selection of compatible genotypes and allowing for a rapid screening of inter-compatibility among cultivars in order to guarantee effective fertilization and increase olive production. The construction of high-density linkage maps has led to the development of the first functional marker in olive and provided positional candidate genes in the SI locus.

18.
Front Plant Sci ; 9: 1320, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30298075

RESUMEN

Germplasm collections are basic tools for conservation, characterization, and efficient use of olive genetic resources. The identification of the olive cultivars maintained in the collections is an important ongoing task which has been performed by both, morphological and molecular markers. In the present study, based on the sequencing results of previous genomic projects, a new set of 1,043 EST-SNP markers has been identified. In order to evaluate its discrimination capacity and utility in diversity studies, this set of markers was used in a representative number of accessions from 20 different olive growing countries and maintained at the World Olive Germplasm Collection of IFAPA Centre 'Alameda del Obispo' (Córdoba, Spain), one of the world's largest olive germplasm bank. Thus, the cultivated material included: cultivars belonging to previously defined core collections by means of SSR markers and agronomical traits, well known homonymy cases, possible redundancies previously identified in the collection, and recently introduced accessions. Marker stability was tested in repeated analyses of a selected number of accessions, as well as in different trees and accessions belonging to the same cultivar. In addition, 15 genotypes from a cross 'Picual' × 'Arbequina' cultivars from the IFAPA olive breeding program and a set of 89 wild genotypes were also included in the study. Our results indicate that, despite their relatively wide variability, the new set of EST-SNPs displayed lower levels of genetic diversity than SSRs in the set of olive core collections tested. However, the EST-SNP markers displayed consistent and reliable results from different plant material sources and plant propagation events. The EST-SNPs revealed a clear cut off between inter- and intra-cultivar variation in olive. Besides, they were able to reliably discriminate among different accessions, to detect possible homonymy cases as well as efficiently ascertain the presence of redundant germplasm in the collection. Additionally, these markers were highly transferable to the wild genotypes. These results, together with the low genotyping error rates and the easy and fully automated procedure used to get the genotyping data, validate the new set of EST-SNPs as possible markers of choice for olive cultivar identification.

19.
Front Plant Sci ; 9: 1932, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30671076

RESUMEN

Gene sequence variation in cultivated olive (Olea europaea L. subsp. europaea var. europaea), the most important oil tree crop of the Mediterranean basin, has been poorly evaluated up to now. A deep sequence analysis of fragments of four genes, OeACP1, OeACP2, OeLUS and OeSUT1, in 90 cultivars, revealed a wide range of polymorphisms along all recognized allele forms and unexpected allele frequencies and genotype combinations. High linkage values among most polymorphisms were recorded within each gene fragment. The great sequence variability corresponded to a low number of alleles and, surprisingly, to a small fraction of genotype combinations. The distribution, frequency, and combination of the different alleles at each locus is possibly due to natural and human pressures, such as selection, ancestrality, or fitness. Phylogenetic analyses of allele sequences showed distant and complex patterns of relationships among cultivated olives, intermixed with other related forms, highlighting an evolutionary connection between olive cultivars and the O. europaea subspecies cuspidata and cerasiformis. This study demonstrates how a detailed and complete sequence analysis of a few gene portions and a thorough genotyping on a representative set of cultivars can clarify important issues related to sequence polymorphisms, reconstructing the phylogeny of alleles, as well as the genotype combinations. The identification of regions representing blocks of recombination could reveal polymorphisms that represent putatively functional markers. Indeed, specific mutations found on the analyzed OeACP1 and OeACP2 fragments seem to be correlated to the fruit weight.

20.
Plant Methods ; 13: 111, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29238398

RESUMEN

BACKGROUND: The morphological analysis of olive leaves, fruits and endocarps may represent an efficient tool for the characterization and discrimination of cultivars and the establishment of relationships among them. In recent years, much attention has been focused on the application of molecular markers, due to their high diagnostic efficiency and independence from environmental and phenological variables. RESULTS: In this study, we present a semi-automatic methodology of detecting various morphological parameters. With the aid of computing and image analysis tools, we created semi-automatic algorithms applying intuitive mathematical descriptors that quantify many fruit, leaf and endocarp morphological features. In particular, we examined quantitative and qualitative characters such as size, shape, symmetry, contour roughness and presence of additional structures such as nipple, petiole, endocarp surface roughness, etc.. CONCLUSION: We illustrate the performance and the applicability of our approach on Greek olive cultivars; on sets of images from fruits, leaves and endocarps. In addition, the proposed methodology was also applied for the description of other crop species morphologies such as tomato, grapevine and pear. This allows us to describe crop morphologies efficiently and robustly in a semi-automated way.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...